skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deng, Guogang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Allylation of nucleophiles with highly reactive electrophiles like allyl halides can be conducted without metal catalysts. Less reactive electrophiles, such as allyl esters and carbonates, usually require a transition metal catalyst to facilitate the allylation. Herein, we report a unique transition-metal-free allylation strategy with allyl ether electrophiles. Reaction of a host of allyl ethers with 2-azaallyl anions delivers valuable homoallylic amine derivatives (up to 92%), which are significant in the pharmaceutical industry. Interestingly, no deprotonative isomerization or cyclization of the products were observed. The potential synthetic utility and ease of operation is demonstrated by a gram scale telescoped preparation of a homoallylic amine. In addition, mechanistic studies provide insight into these C(sp 3 )–C(sp 3 ) bond-forming reactions. 
    more » « less
  2. null (Ed.)
    A unique enantioselective nickel-catalyzed vinylation of 2-azaallyl anions is advanced for the first time. This method affords diverse vinyl aryl methyl amines with high enantioselectivities, which are frequently occurring scaffolds in natural products and medications. This C–H functionalization method can also be extended to the synthesis of enantioenriched 1,3-diamine derivatives by employing suitably elaborated vinyl bromides. Key to the success of this process is the identification of a Ni/chiraphos catalyst system and a less reducing 2-azaallyl anion, all of which favor an anionic vinylation route over a background radical reaction. A telescoped gram scale synthesis and a product derivatization study confirmed the scalability and synthetic potential of this method. 
    more » « less
  3. A unique C(sp 3 )–H/C(sp 3 )–H dehydrocoupling of N -benzylimines with saturated heterocycles is described. Using super electron donor (SED) 2-azaallyl anions and aryl iodides as electron acceptors, single-electron-transfer (SET) generates an aryl radical. Hydrogen atom transfer (HAT) from saturated heterocycles or toluenes to the aryl radical generates alkyl radicals or benzylic radicals, respectively. The newly formed alkyl radicals and benzylic radicals couple with the 2-azaallyl radicals with formation of new C–C bonds. Experimental evidence supports the key hydrogen-abstraction by the aryl radical, which determines the chemoselectivity of the radical–radical coupling reaction. It is noteworthy that this procedure avoids the use of traditional strong oxidants and transition metals. 
    more » « less
  4. Abstract Isochromenes are important pharmacophores present in biologically active molecules and natural products. Their synthesis is generally limited to cyclization of phenyl propargyl ether precursors under transition metal catalyzed conditions. Herein, we present a novel disconnection that rapidly constructs isochromene derivatives through a cascade radical cyclization strategy. Generation of aryl radicals by SET reduction of 2‐iodo benzyl allenyl ethers is followed by radical cyclization to construct the isochromene core with formation of an allylic radical. The allylic radical then undergoes coupling with the azaallyl radical to give products in good to excellent yields. The elaborated 2‐iodo phenyl propargyl ether precursors can be used to construct isochromenes bearing various functional groups. magnified image 
    more » « less